Supporting Information ## ACE-2-derived Biomimetic Peptides for the Inhibition of Spike Protein of SARS-CoV-2 | Table | of Contents | |--------------|---| | 1. | Table S1: Docking score of 136 peptide library2-6 | | 2. | Table S2: The contribution (in kJ/mol) of each residue present in α-1 helix and the designed peptide inhibitor 13 to binding to the spike protein estimated by the MMPBSA method | | 3. | Figure S1: The docking energy of a number of mutations performed at each selected location of α-1 helix. The peptide 13 inhibitor designed comprise mutations with the lowest docking energy highlighted by connecting through red line | | 4. | Figure S2: For the spike protein in complexes, the average values for the (A) RMSD and (B) RMSF and $R_{\rm g}$ along with standard deviations are shown in bar plots | | 5. | Figure S3: The RMSD of the (A) spike protein (black) bound α -1 helix (red) and (B) spike protein (black) bound the best peptide inhibitor 13 (red) plotted as a function | | 6. | of simulation time | | 7. | displayed in yellow color | | 8. | Figure S6: The number of hydrogen bonds formed by α -1 helix (black) and the | | 9. | peptide inhibitor 13 (red) with the spike protein in different time instants9 Figure S7: The 2D scatter plots of α -1 helix (black) and the designed peptide inhibitor 13 (red), projecting the motion in phase space for the first two principal | | | components (FV1 and FV2 are eigenvectors 1 and 2 respectively) 10 | **Table S1:** Docking score of 136 peptide library. | Residue | Mutation | HADDOCK score (kcal/mol) | |---------|----------|--------------------------| | Glu22 | Arg | -113.416 ± 7.454 | | | Asn | -105.634 ± 2.050 | | | Asp | -111.004 ± 2.431 | | | Gln | -113.889 ± 4.798 | | | His | -99.385 ± 3.617 | | | Lys | -92.732 ± 3.332 | | | Phe | -98.766 ± 2.826 | | | Ser | -86.437 ± 3.569 | | | Trp | -100.170 ± 6.893 | | | Tyr | -93.760 ± 1.669 | | | Thr | -94.076 ± 3.045 | | Glu23 | Arg | -114.971 ± 11.919 | | | Asn | -110.694 ± 2.551 | | | Asp | -110.905 ± 3.919 | | | Gln | -111.119 ± 4.438 | | | His | -114.040 ± 8.798 | | | Lys | -111.458 ± 2.200 | | | Phe | -120.900 ± 5.603 | | | Ser | -107.329 ± 6.281 | | | Thr | -108.798 ± 7.440 | | | Trp | -123.177 ± 7.719 | | | Tyr | -113.116 ± 3.826 | | Ala25 | Arg | -93.861 ± 2.657 | | | Asn | -94.040 ± 7.277 | | | Asp | -99.546 ± 6.772 | | | Gln | -92.883 ± 2.288 | | | Glu | -96.886 ± 3.142 | | | Lys | -94.099 ± 2.716 | | | Phe | -104.503 ± 1.446 | | | Ser | -92.780 ± 5.553 | | | Thr | -97.246 ± 4.055 | | | His | -93.084 ± 5.304 | | | Trp | -106.934 ± 9.503 | |-------|-----|----------------------| | | Tyr | -97.824 ± 4.477 | | LYS26 | Arg | -120.216 ± 2.238 | | | Asn | -115.561 ± 4.649 | | | Asp | -113.807 ± 6.180 | | | Gln | -109.152 ± 4.159 | | | Glu | -123.489 ± 6.901 | | | His | -131.296 ± 6.727 | | | Phe | -129.554 ± 4.929 | | | Ser | -111.371 ± 6.303 | | | Thr | -113.471 ± 6.403 | | | Trp | -132.492 ± 6.369 | | | Tyr | -127.062 ± 4.976 | | Thr27 | Arg | -113.968 ± 3.746 | | | Asn | -113.533 ± 2.929 | | | Asp | -107.774 ± 3.750 | | | Gln | -113.429 ± 5.338 | | | Glu | -111.079 ± 1.444 | | | His | -112.930 ± 8.831 | | | Lys | -114.085 ± 3.164 | | | Phe | -125.208 ± 2.861 | | | Ser | -111.307 ± 3.854 | | | Trp | -115.600 ± 2.064 | | | Tyr | -110.060 ± 1.853 | | Phe28 | Arg | -92.355 ± 4.644 | | | Asn | -92.662 ± 3.296 | | | Asp | -94.315 ± 6.657 | | | Gln | -96.346 ± 7.104 | | | Glu | -99.470 ± 2.408 | | | His | -99.834 ± 1.859 | | | Lys | -93.428 ± 0.532 | | | Ser | -93.664 ± 4.018 | | | Thr | -95.324 ± 3.881 | | | Trp | -96.328 ± 1.791 | | | Tyr | -94.486 ± 3.089 | |-------|-----|-----------------------| | Leu29 | Arg | -113.744 ± 1.674 | | | Asn | -112.173 ± 2.883 | | | Asp | -115.512 ± 5.035 | | | Gln | -112.003 ± 3.048 | | | Glu | -114.561 ± 3.187 | | | His | -113.465 ± 1.038 | | | Lys | -107.505 ± 8.724 | | | Ser | -111.601 ± 4.865 | | | Thr | -111.908 ± 4.897 | | | Trp | -126.567 ± 1.982 | | | Tyr | -127.662 ± 23.668 | | | Phe | -120.270 ± 2.818 | | Phe32 | Arg | -111.751 ± 6.160 | | | Asn | -108.788 ± 4.484 | | | Asp | -111.802 ± 11.551 | | | Gln | -105.082 ± 1.311 | | | Glu | -110.562 ± 1.649 | | | His | -110.467 ± 2.522 | | | Lys | -109.973 ± 4.956 | | | Ser | -102.806 ± 5.821 | | | Thr | -103.841 ± 1.576 | | | Trp | -119.458 ± 3.329 | | | Tyr | -110.839 ± 3.439 | | Asn33 | Arg | -89.667 ± 0.871 | | | Asp | -102.399 ± 2.975 | | | Gln | -92.111 ± 3.641 | | | Glu | -100.862 ± 4.586 | | | His | -93.939 ± 3.356 | | | Lys | -92.375 ± 2.281 | | | Phe | -100.002 ± 10.619 | | | Ser | -93.343 ± 1.330 | | | Thr | -93.882 ± 2.017 | | | Trp | -98.543 ± 2.400 | | | Tyr | -94.749 ± 1.885 | |-------|-----|-----------------------| | Ala36 | Arg | -107.277 ± 7.889 | | | Asn | -105.111 ± 0.732 | | | Asp | -106.643 ± 7.720 | | | Gln | -106.938 ± 1.832 | | | Glu | -106.726 ± 5.805 | | | His | -104.731 ± 2.935 | | | Lys | -113.392 ± 1.945 | | | Phe | -102.874 ± 2.969 | | | Ser | -108.700 ± 0.890 | | | Trp | -116.823 ± 5.970 | | | Thr | -106.231 ± 3.123 | | | Tyr | -110.086 ± 4.111 | | Leu39 | Arg | -118.477 ± 6.082 | | | Asn | -115.627 ± 7.454 | | | Asp | -114.041 ± 1.561 | | | Gln | -113.955 ± 10.062 | | | Glu | -111.566 ± 5.362 | | | Lys | -114.298 ± 2.260 | | | His | -122.459 ± 5.434 | | | Thr | -112.046 ± 6.199 | | | Trp | -133.678 ± 4.400 | | | Tyr | -122.622 ± 3.468 | | | Ser | -104.633 ± 1.315 | | | Phe | -128.407 ± 2.607 | | Phe40 | Arg | -100.3 ± 4.2 | | | Asn | -106.5 ± 1.8 | | | Asp | -110.1 ± 1.3 | | | Gln | -102.6 ± 3.7 | | | Glu | -108.4 ± 2.7 | | | His | -108.2 ± 2.2 | | | Lys | -104.5 ± 2.8 | | | Ser | -102.6 ± 3.6 | | | Thr | -101.4 ± 4.1 | | Trp | -111.357 ± 0.751 | |-----|----------------------| | Tyr | -110.9 ± 5.0 | **Table S2:** The contribution (in kJ/mol) of each residue present in α -1 helix and the designed peptide inhibitor 13 to binding to the spike protein estimated by the MMPBSA method. | Residue no. | α-1 helix | Residue no. | Peptide inhibitor 13 | |-------------|-----------|-------------|----------------------| | I21 | 12.77 | I21 | 19.75 | | E22 | -10.37 | D22 | -19.17 | | E23 | -9.78 | W23 | -6.13 | | Q24 | 0.57 | Q24 | -0.07 | | A25 | 0.01 | F25 | -0.34 | | K26 | 12.80 | W26 | -7.21 | | T27 | -0.51 | F27 | -1.72 | | F28 | -0.96 | H28 | -0.52 | | L29 | 0.06 | Y29 | -0.71 | | D30 | -11.76 | D30 | -14.41 | | K31 | 13.39 | K31 | 23.71 | | F32 | -0.02 | W32 | -0.91 | | N33 | 0.57 | D33 | -11.29 | | H34 | -0.22 | H34 | -2.26 | | E35 | -9.78 | E35 | -20.49 | | A36 | 0.07 | W36 | -0.96 | | E37 | -12.07 | E37 | -23.47 | | D38 | -11.93 | D38 | -18.41 | | L39 | 0.01 | E39 | -18.23 | | F40 | 0.12 | W40 | -5.70 | | Y41 | -0.19 | Y41 | -0.56 | | Q42 | 0.69 | Q42 | 0.23 | | S43 | 0.57 | S43 | 0.19 | | S44 | -11.41 | S44 | -15.36 | Figure S1. The docking energy of a number of mutations performed at each selected location of α -1 helix. The peptide 13 inhibitor designed comprises mutations with the lowest docking energy highlighted by connecting through red line. **Figure S2**. For the spike protein in complexes, the average values for the (A) RMSD and (B) RMSF and R_g along with standard deviations are shown in bar plots. **Figure S3.** The RMSD of the (A) spike protein (black) bound α -1 helix (red) and (B) spike protein (black) bound the best peptide inhibitor 13 (red) plotted as a function of simulation time. **Figure S4.** The RMSF of amino acid residues in (A) α -1 helix (black) and the designed peptide inhibitor 13 (red) and (B) the spike protein bound to α -1 helix (black) and to the designed peptide inhibitor 13 (red) is plotted as a function of simulation time. The fluctuating residues (380 to 390) of the spike protein are displayed in yellow color. **Figure S5**. (A) The radius of gyration (Rg) of the spike protein bound to α -1 helix (black) and the designed peptide inhibitor 13 (red) and (B) the Rg of the α -1 helix (black) and the peptide inhibitor 13 (red) bound to the spike protein plotted as a function of simulation time. Figure S6. The number of hydrogen bonds formed by α -1 helix (black) and the peptide inhibitor 13 (red) with the spike protein in different time instants. Figure S7. The 2D scatter plots of α -1 helix (black) and the designed peptide inhibitor 13 (red), projecting the motion in phase space for the first two principal components (EV1 and EV2 are eigenvectors 1 and 2, respectively).